29.7.20 problem 195

Internal problem ID [4795]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 7
Problem number : 195
Date solved : Sunday, March 30, 2025 at 03:55:18 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x y^{\prime }&=y+\sqrt {x^{2}-y^{2}} \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 27
ode:=x*diff(y(x),x) = y(x)+(x^2-y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ -\arctan \left (\frac {y}{\sqrt {x^{2}-y^{2}}}\right )+\ln \left (x \right )-c_1 = 0 \]
Mathematica. Time used: 0.26 (sec). Leaf size: 18
ode=x D[y[x],x]==y[x]+Sqrt[x^2-y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x \cosh (i \log (x)+c_1) \]
Sympy. Time used: 0.918 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 - y(x)**2) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x \sin {\left (C_{1} - \log {\left (x \right )} \right )} \]