28.4.27 problem 7.27

Internal problem ID [4559]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 7. Systems of linear differential equations. Problems at page 351
Problem number : 7.27
Date solved : Sunday, March 30, 2025 at 03:26:15 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )-x \left (t \right )-2 y \left (t \right )&=0\\ x \left (t \right )-\frac {d}{d t}y \left (t \right )&=15 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = x_{0}\\ y \left (0\right ) = y_{0} \end{align*}

Maple. Time used: 0.212 (sec). Leaf size: 165
ode:=[diff(x(t),t)-x(t)-2*y(t) = 0, x(t)-diff(y(t),t) = 15*cos(t)*Heaviside(t-Pi)]; 
ic:=x(0) = x__0y(0) = y__0; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= \frac {x_{0} {\mathrm e}^{-t}}{3}+\frac {2 x_{0} {\mathrm e}^{2 t}}{3}+\frac {2 y_{0} {\mathrm e}^{2 t}}{3}-\frac {2 y_{0} {\mathrm e}^{-t}}{3}+3 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right )+9 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right )+4 \operatorname {Heaviside}\left (t -\pi \right ) {\mathrm e}^{-2 \pi +2 t}+5 \operatorname {Heaviside}\left (t -\pi \right ) {\mathrm e}^{\pi -t} \\ y \left (t \right ) &= \frac {x_{0} {\mathrm e}^{2 t}}{3}-\frac {x_{0} {\mathrm e}^{-t}}{3}+\frac {2 y_{0} {\mathrm e}^{-t}}{3}+\frac {y_{0} {\mathrm e}^{2 t}}{3}-6 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right )-3 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right )+2 \operatorname {Heaviside}\left (t -\pi \right ) {\mathrm e}^{-2 \pi +2 t}-5 \operatorname {Heaviside}\left (t -\pi \right ) {\mathrm e}^{\pi -t} \\ \end{align*}
Mathematica. Time used: 0.357 (sec). Leaf size: 160
ode={D[x[t],t]-x[t]-2*y[t]==0,x[t]-D[y[t],t]==15*Cos[t]*UnitStep[t-Pi]}; 
ic={x[0]==x0,y[0]==y0}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{3} e^{-t} \left (3 \theta (t-\pi ) \left (4 e^{3 t-2 \pi }+3 e^t \sin (t)+9 e^t \cos (t)+5 e^{\pi }\right )+2 e^{3 t} \text {x0}+2 \left (e^{3 t}-1\right ) \text {y0}+\text {x0}\right ) \\ y(t)\to \frac {1}{3} e^{-t-2 \pi } \left (e^{2 \pi } \left (\left (e^{3 t}-1\right ) \text {x0}+\left (e^{3 t}+2\right ) \text {y0}\right )-3 \theta (t-\pi ) \left (-2 e^{3 t}+6 e^{t+2 \pi } \sin (t)+3 e^{t+2 \pi } \cos (t)+5 e^{3 \pi }\right )\right ) \\ \end{align*}
Sympy. Time used: 1.555 (sec). Leaf size: 144
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(x(t) - 15*cos(t)*Heaviside(t - pi) - Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- t} + 2 C_{2} e^{2 t} + \frac {4 e^{2 t} \theta \left (t - \pi \right )}{e^{2 \pi }} + 3 \sin {\left (t \right )} \theta \left (t - \pi \right ) + 9 \cos {\left (t \right )} \theta \left (t - \pi \right ) + 5 e^{\pi } e^{- t} \theta \left (t - \pi \right ), \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{2 t} + \frac {2 e^{2 t} \theta \left (t - \pi \right )}{e^{2 \pi }} - 6 \sin {\left (t \right )} \theta \left (t - \pi \right ) - 3 \cos {\left (t \right )} \theta \left (t - \pi \right ) - 5 e^{\pi } e^{- t} \theta \left (t - \pi \right )\right ] \]