Internal
problem
ID
[4558]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.26
Date
solved
:
Sunday, March 30, 2025 at 03:26:14 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(x(t),t),t)+2*x(t)-2*diff(y(t),t) = 0, 3*diff(x(t),t)+diff(diff(y(t),t),t)-8*y(t) = 240*exp(t)]; ic:=x(0) = 0y(0) = 0D(x)(0) = 0D(y)(0) = 0; dsolve([ode,ic]);
ode={D[x[t],{t,2}]+2*x[t]-2*D[y[t],t]==0,3*D[x[t],t]+D[y[t],{t,2}]-8*y[t]==240*Exp[t]}; ic={x[0]==0,y[0]==0,Derivative[1][x][0] == 0,Derivative[1][y][0] == 0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) + Derivative(x(t), (t, 2)) - 2*Derivative(y(t), t),0),Eq(-8*y(t) - 240*exp(t) + 3*Derivative(x(t), t) + Derivative(y(t), (t, 2)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)