Internal
problem
ID
[4511]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
4.
Linear
Differential
Equations.
Page
183
Problem
number
:
68
Date
solved
:
Sunday, March 30, 2025 at 03:24:50 AM
CAS
classification
:
[[_3rd_order, _exact, _linear, _nonhomogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 9*x^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==9*x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 9*x**2*log(x) + 2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)