Internal
problem
ID
[4510]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
4.
Linear
Differential
Equations.
Page
183
Problem
number
:
67
Date
solved
:
Sunday, March 30, 2025 at 03:24:27 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+5*y(x) = 5/x^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+5*y[x]==5/x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) + 5*y(x) - 5*log(x)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)