28.2.24 problem 24

Internal problem ID [4467]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 4. Linear Differential Equations. Page 183
Problem number : 24
Date solved : Sunday, March 30, 2025 at 03:23:22 AM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=48 x \,{\mathrm e}^{x} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 22
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = 48*x*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (2 x^{4}+c_3 \,x^{2}+c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 27
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==48*x*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x \left (2 x^4+c_3 x^2+c_2 x+c_1\right ) \]
Sympy. Time used: 0.225 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-48*x*exp(x) - y(x) + 3*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + x \left (C_{3} + 2 x^{2}\right )\right )\right ) e^{x} \]