28.2.23 problem 23

Internal problem ID [4466]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 4. Linear Differential Equations. Page 183
Problem number : 23
Date solved : Sunday, March 30, 2025 at 03:23:21 AM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} y^{\left (5\right )}-3 y^{\prime \prime \prime }+y&=9 \,{\mathrm e}^{2 x} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 104
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+y(x) = 9*exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x}+c_1 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}-3 \textit {\_Z}^{3}+1, \operatorname {index} =1\right ) x}+c_2 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}-3 \textit {\_Z}^{3}+1, \operatorname {index} =2\right ) x}+c_3 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}-3 \textit {\_Z}^{3}+1, \operatorname {index} =3\right ) x}+c_4 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}-3 \textit {\_Z}^{3}+1, \operatorname {index} =4\right ) x}+c_5 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}-3 \textit {\_Z}^{3}+1, \operatorname {index} =5\right ) x} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 126
ode=D[y[x],{x,5}]-3*D[y[x],{x,3}]+y[x]==9*Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_4 \exp \left (x \text {Root}\left [\text {$\#$1}^5-3 \text {$\#$1}^3+1\&,4\right ]\right )+c_5 \exp \left (x \text {Root}\left [\text {$\#$1}^5-3 \text {$\#$1}^3+1\&,5\right ]\right )+c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^5-3 \text {$\#$1}^3+1\&,2\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^5-3 \text {$\#$1}^3+1\&,3\right ]\right )+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^5-3 \text {$\#$1}^3+1\&,1\right ]\right )+e^{2 x} \]
Sympy. Time used: 0.461 (sec). Leaf size: 102
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 9*exp(2*x) - 3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 5)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x \operatorname {CRootOf} {\left (x^{5} - 3 x^{3} + 1, 0\right )}} + C_{4} e^{x \operatorname {CRootOf} {\left (x^{5} - 3 x^{3} + 1, 1\right )}} + C_{5} e^{x \operatorname {CRootOf} {\left (x^{5} - 3 x^{3} + 1, 2\right )}} + \left (C_{1} \sin {\left (x \operatorname {im}{\left (\operatorname {CRootOf} {\left (x^{5} - 3 x^{3} + 1, 3\right )}\right )} \right )} + C_{2} \cos {\left (x \operatorname {im}{\left (\operatorname {CRootOf} {\left (x^{5} - 3 x^{3} + 1, 3\right )}\right )} \right )}\right ) e^{x \operatorname {re}{\left (\operatorname {CRootOf} {\left (x^{5} - 3 x^{3} + 1, 3\right )}\right )}} + e^{2 x} \]