28.1.112 problem 135
Internal
problem
ID
[4418]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
135
Date
solved
:
Sunday, March 30, 2025 at 03:20:53 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
\begin{align*} \cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.088 (sec). Leaf size: 178
ode:=cos(y(x))+sin(y(x))*(x-sin(y(x))*cos(y(x)))*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \arctan \left (\frac {{\mathrm e}^{2 \operatorname {RootOf}\left (-x \,{\mathrm e}^{4 \textit {\_Z}}+2 c_1 \,{\mathrm e}^{3 \textit {\_Z}}+2 \,{\mathrm e}^{3 \textit {\_Z}} \textit {\_Z} -2 \,{\mathrm e}^{3 \textit {\_Z}}-2 x \,{\mathrm e}^{2 \textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}} c_1 +2 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}}-x \right )}-1}{{\mathrm e}^{2 \operatorname {RootOf}\left (-x \,{\mathrm e}^{4 \textit {\_Z}}+2 c_1 \,{\mathrm e}^{3 \textit {\_Z}}+2 \,{\mathrm e}^{3 \textit {\_Z}} \textit {\_Z} -2 \,{\mathrm e}^{3 \textit {\_Z}}-2 x \,{\mathrm e}^{2 \textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}} c_1 +2 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}}-x \right )}+1}, \operatorname {sech}\left (\operatorname {RootOf}\left (-x \,{\mathrm e}^{4 \textit {\_Z}}+2 c_1 \,{\mathrm e}^{3 \textit {\_Z}}+2 \,{\mathrm e}^{3 \textit {\_Z}} \textit {\_Z} -2 \,{\mathrm e}^{3 \textit {\_Z}}-2 x \,{\mathrm e}^{2 \textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}} c_1 +2 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}}-x \right )\right )\right )
\]
✓ Mathematica. Time used: 0.438 (sec). Leaf size: 26
ode=Cos[y[x]]+ Sin[y[x]] * (x-Sin[y[x]]*Cos[y[x]] )*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}[x=\cos (y(x)) (\text {arctanh}(\sin (y(x)))-\sin (y(x)))+c_1 \cos (y(x)),y(x)]
\]
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq((x - sin(y(x))*cos(y(x)))*sin(y(x))*Derivative(y(x), x) + cos(y(x)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out