28.1.111 problem 134
Internal
problem
ID
[4417]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
134
Date
solved
:
Sunday, March 30, 2025 at 03:20:38 AM
CAS
classification
:
[[_Abel, `2nd type`, `class B`]]
\begin{align*} 2 y \left (x \,{\mathrm e}^{x^{2}}+y \sin \left (x \right ) \cos \left (x \right )\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.015 (sec). Leaf size: 693
ode:=2*y(x)*(x*exp(x^2)+y(x)*sin(x)*cos(x))+(2*exp(x^2)+3*y(x)*sin(x)^2)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*} \text {Solution too large to show}\end{align*}
✓ Mathematica. Time used: 64.239 (sec). Leaf size: 628
ode=(2*y[x]*(x*Exp[x^2]+y[x]*Sin[x]*Cos[x]) )+(2*Exp[x^2]+3*y[x]*Sin[x]^2 )*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {1}{12} \csc ^2(x) \left (4 e^{x^2}+\sqrt [3]{64 e^{3 x^2}+12 \sqrt {6} \sqrt {c_1 \sin ^4(x) \left (64 e^{3 x^2}-108 c_1 \cos (2 x)+27 c_1 \cos (4 x)+81 c_1\right )}-216 c_1 \cos (2 x)+54 c_1 \cos (4 x)+162 c_1}+\frac {16 e^{2 x^2}}{\sqrt [3]{64 e^{3 x^2}+12 \sqrt {6} \sqrt {c_1 \sin ^4(x) \left (64 e^{3 x^2}-108 c_1 \cos (2 x)+27 c_1 \cos (4 x)+81 c_1\right )}-216 c_1 \cos (2 x)+54 c_1 \cos (4 x)+162 c_1}}\right ) \\
y(x)\to -\frac {1}{24} \csc ^2(x) \left (8 e^{x^2}+i \left (\sqrt {3}+i\right ) \sqrt [3]{64 e^{3 x^2}+12 \sqrt {6} \sqrt {c_1 \sin ^4(x) \left (64 e^{3 x^2}-108 c_1 \cos (2 x)+27 c_1 \cos (4 x)+81 c_1\right )}-216 c_1 \cos (2 x)+54 c_1 \cos (4 x)+162 c_1}-\frac {16 i \left (\sqrt {3}-i\right ) e^{2 x^2}}{\sqrt [3]{64 e^{3 x^2}+12 \sqrt {6} \sqrt {c_1 \sin ^4(x) \left (64 e^{3 x^2}-108 c_1 \cos (2 x)+27 c_1 \cos (4 x)+81 c_1\right )}-216 c_1 \cos (2 x)+54 c_1 \cos (4 x)+162 c_1}}\right ) \\
y(x)\to -\frac {1}{24} \csc ^2(x) \left (8 e^{x^2}-i \left (\sqrt {3}-i\right ) \sqrt [3]{64 e^{3 x^2}+12 \sqrt {6} \sqrt {c_1 \sin ^4(x) \left (64 e^{3 x^2}-108 c_1 \cos (2 x)+27 c_1 \cos (4 x)+81 c_1\right )}-216 c_1 \cos (2 x)+54 c_1 \cos (4 x)+162 c_1}+\frac {16 i \left (\sqrt {3}+i\right ) e^{2 x^2}}{\sqrt [3]{64 e^{3 x^2}+12 \sqrt {6} \sqrt {c_1 \sin ^4(x) \left (64 e^{3 x^2}-108 c_1 \cos (2 x)+27 c_1 \cos (4 x)+81 c_1\right )}-216 c_1 \cos (2 x)+54 c_1 \cos (4 x)+162 c_1}}\right ) \\
\end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq((2*x*exp(x**2) + 2*y(x)*sin(x)*cos(x))*y(x) + (3*y(x)*sin(x)**2 + 2*exp(x**2))*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out