Internal
problem
ID
[4179]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
7.
Special
functions.
Exercises
at
page
124
Problem
number
:
3(a)
Date
solved
:
Sunday, March 30, 2025 at 02:41:44 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)-(-3*x^2+x)/(2*x^3+2*x^2)*diff(y(x),x)+y(x)/(2*x^3+2*x^2) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]-(x-3*x^2)/(2*(x^2+x^3))*D[y[x],x]+y[x]/(2*(x^2+x^3))==0; ic={}; AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x**2 - x)*Derivative(y(x), x)/(2*x**3 + 2*x**2) + Derivative(y(x), (x, 2)) + y(x)/(2*x**3 + 2*x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)