23.5.1 problem 2

Internal problem ID [4178]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 7. Special functions. Exercises at page 124
Problem number : 2
Date solved : Sunday, March 30, 2025 at 02:41:42 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }+\frac {y}{x^{2}}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.016 (sec). Leaf size: 32
Order:=6; 
ode:=diff(diff(y(x),x),x)+1/x^2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (c_1 \,x^{-\frac {i \sqrt {3}}{2}}+c_2 \,x^{\frac {i \sqrt {3}}{2}}\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 27
ode=D[y[x],{x,2}]+1/x^2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
 
\[ \{y(x)\}\to c_1 x^{-(-1)^{2/3}}+c_2 x^{\sqrt [3]{-1}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) + y(x)/x**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None