Internal
problem
ID
[4145]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
7(d)
Date
solved
:
Sunday, March 30, 2025 at 02:40:58 AM
CAS
classification
:
[[_3rd_order, _missing_x]]
ode:=diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)-5*diff(y(x),x)-6*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+2*D[y[x],{x,2}]-5*D[y[x],x]-6*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*y(x) - 5*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)