23.3.4 problem 7(d)

Internal problem ID [4145]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 4. The general linear differential equation of order n. Exercises at page 63
Problem number : 7(d)
Date solved : Sunday, March 30, 2025 at 02:40:58 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)-5*diff(y(x),x)-6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_3 \,{\mathrm e}^{5 x}+c_1 \,{\mathrm e}^{2 x}+c_2 \right ) {\mathrm e}^{-3 x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode=D[y[x],{x,3}]+2*D[y[x],{x,2}]-5*D[y[x],x]-6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x} \left (c_2 e^{2 x}+c_3 e^{5 x}+c_1\right ) \]
Sympy. Time used: 0.165 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) - 5*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{- x} + C_{3} e^{2 x} \]