23.3.3 problem 7(c)

Internal problem ID [4144]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 4. The general linear differential equation of order n. Exercises at page 63
Problem number : 7(c)
Date solved : Sunday, March 30, 2025 at 02:40:57 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+4*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 +c_2 \sin \left (x \right )+c_3 \cos \left (x \right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 22
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+4*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (c_2 \cos (x)+c_1 \sin (x)+c_3) \]
Sympy. Time used: 0.154 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) + 4*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} \sin {\left (x \right )} + C_{3} \cos {\left (x \right )}\right ) e^{x} \]