22.1.2 problem 2

Internal problem ID [4088]
Book : Applied Differential equations, Newby Curle. Van Nostrand Reinhold. 1972
Section : Examples, page 35
Problem number : 2
Date solved : Sunday, March 30, 2025 at 02:17:20 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

\begin{align*} \left (y-x y^{\prime }\right )^{2}&=1+{y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.078 (sec). Leaf size: 57
ode:=(y(x)-x*diff(y(x),x))^2 = 1+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {-x^{2}+1} \\ y &= -\sqrt {-x^{2}+1} \\ y &= c_1 x -\sqrt {c_1^{2}+1} \\ y &= c_1 x +\sqrt {c_1^{2}+1} \\ \end{align*}
Mathematica. Time used: 0.123 (sec). Leaf size: 73
ode=(y[x]-x*D[y[x],x])^2==1+(D[y[x],x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 x-\sqrt {1+c_1{}^2} \\ y(x)\to c_1 x+\sqrt {1+c_1{}^2} \\ y(x)\to -\sqrt {1-x^2} \\ y(x)\to \sqrt {1-x^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x*Derivative(y(x), x) + y(x))**2 - Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out