22.1.1 problem 1
Internal
problem
ID
[4087]
Book
:
Applied
Differential
equations,
Newby
Curle.
Van
Nostrand
Reinhold.
1972
Section
:
Examples,
page
35
Problem
number
:
1
Date
solved
:
Sunday, March 30, 2025 at 02:17:19 AM
CAS
classification
:
[_quadrature]
\begin{align*} y&=y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \end{align*}
✓ Maple. Time used: 0.071 (sec). Leaf size: 106
ode:=y(x) = diff(y(x),x)+1/2*diff(y(x),x)^2;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {\operatorname {LambertW}\left (-\sqrt {2}\, {\mathrm e}^{-1+x -c_1}\right ) \left (\operatorname {LambertW}\left (-\sqrt {2}\, {\mathrm e}^{-1+x -c_1}\right )+2\right )}{2} \\
y &= \frac {{\mathrm e}^{2 \operatorname {RootOf}\left (-\textit {\_Z} -2 x +2 \,{\mathrm e}^{\textit {\_Z}}-2+2 c_1 -\ln \left (2\right )+\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}}{2}-{\mathrm e}^{\operatorname {RootOf}\left (-\textit {\_Z} -2 x +2 \,{\mathrm e}^{\textit {\_Z}}-2+2 c_1 -\ln \left (2\right )+\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )} \\
\end{align*}
✓ Mathematica. Time used: 15.127 (sec). Leaf size: 66
ode=y[x]==D[y[x],x]+1/2*(D[y[x],x])^2;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {1}{2} W\left (-e^{x-1-c_1}\right ) \left (2+W\left (-e^{x-1-c_1}\right )\right ) \\
y(x)\to \frac {1}{2} W\left (e^{x-1+c_1}\right ) \left (2+W\left (e^{x-1+c_1}\right )\right ) \\
y(x)\to 0 \\
\end{align*}
✓ Sympy. Time used: 0.639 (sec). Leaf size: 51
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x) - Derivative(y(x), x)**2/2 - Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ x + \sqrt {2 y{\left (x \right )} + 1} - \log {\left (\sqrt {2 y{\left (x \right )} + 1} + 1 \right )} = C_{1}, \ x - \sqrt {2 y{\left (x \right )} + 1} - \log {\left (\sqrt {2 y{\left (x \right )} + 1} - 1 \right )} = C_{1}\right ]
\]