Internal
problem
ID
[3752]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.7,
The
Variation
of
Parameters
Method.
page
556
Problem
number
:
Problem
8
Date
solved
:
Sunday, March 30, 2025 at 02:07:21 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-10*diff(y(x),x)+25*y(x) = 2*exp(5*x)/(x^2+4); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-10*D[y[x],x]+25*y[x]==2*Exp[5*x]/(4+x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(25*y(x) - 10*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2*exp(5*x)/(x**2 + 4),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (25*x**2*y(x) + x**2*Derivative(y(x), (x, 2)) + 100*y(x) - 2*exp(5*x) + 4*Derivative(y(x), (x, 2)))/(10*(x**2 + 4)) cannot be solved by the factorable group method