Internal
problem
ID
[3753]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.7,
The
Variation
of
Parameters
Method.
page
556
Problem
number
:
Problem
9
Date
solved
:
Sunday, March 30, 2025 at 02:07:23 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+13*y(x) = 4*exp(3*x)*sec(2*x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-6*D[y[x],x]+13*y[x]==4*Exp[3*x]*Sec[2*x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(13*y(x) - 4*exp(3*x)/cos(2*x)**2 - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)