14.32.7 problem 7

Internal problem ID [2831]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.7 (Phase portraits of linear systems). Page 427
Problem number : 7
Date solved : Sunday, March 30, 2025 at 12:33:27 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-2 x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.136 (sec). Leaf size: 81
ode:=[diff(x__1(t),t) = 2*x__2(t), diff(x__2(t),t) = -2*x__1(t)-x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-\frac {t}{2}} \left (\sin \left (\frac {\sqrt {15}\, t}{2}\right ) c_1 +\cos \left (\frac {\sqrt {15}\, t}{2}\right ) c_2 \right ) \\ x_{2} \left (t \right ) &= -\frac {{\mathrm e}^{-\frac {t}{2}} \left (\sin \left (\frac {\sqrt {15}\, t}{2}\right ) \sqrt {15}\, c_2 -\cos \left (\frac {\sqrt {15}\, t}{2}\right ) \sqrt {15}\, c_1 +\sin \left (\frac {\sqrt {15}\, t}{2}\right ) c_1 +\cos \left (\frac {\sqrt {15}\, t}{2}\right ) c_2 \right )}{4} \\ \end{align*}
Mathematica. Time used: 0.023 (sec). Leaf size: 111
ode={D[x1[t],t]==0*x1[t]+2*x2[t],D[x2[t],t]==-2*x1[t]-1*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{15} e^{-t/2} \left (15 c_1 \cos \left (\frac {\sqrt {15} t}{2}\right )+\sqrt {15} (c_1+4 c_2) \sin \left (\frac {\sqrt {15} t}{2}\right )\right ) \\ \text {x2}(t)\to \frac {1}{15} e^{-t/2} \left (15 c_2 \cos \left (\frac {\sqrt {15} t}{2}\right )-\sqrt {15} (4 c_1+c_2) \sin \left (\frac {\sqrt {15} t}{2}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.190 (sec). Leaf size: 92
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__2(t) + Derivative(x__1(t), t),0),Eq(2*x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \left (\frac {C_{1}}{4} - \frac {\sqrt {15} C_{2}}{4}\right ) e^{- \frac {t}{2}} \cos {\left (\frac {\sqrt {15} t}{2} \right )} + \left (\frac {\sqrt {15} C_{1}}{4} + \frac {C_{2}}{4}\right ) e^{- \frac {t}{2}} \sin {\left (\frac {\sqrt {15} t}{2} \right )}, \ x^{2}{\left (t \right )} = C_{1} e^{- \frac {t}{2}} \cos {\left (\frac {\sqrt {15} t}{2} \right )} - C_{2} e^{- \frac {t}{2}} \sin {\left (\frac {\sqrt {15} t}{2} \right )}\right ] \]