Internal
problem
ID
[2830]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.7
(Phase
portraits
of
linear
systems).
Page
427
Problem
number
:
6
Date
solved
:
Sunday, March 30, 2025 at 12:33:26 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 3*x__1(t)-x__2(t), diff(x__2(t),t) = 5*x__1(t)-3*x__2(t)]; dsolve(ode);
ode={D[x1[t],t]==3*x1[t]-x2[t],D[x2[t],t]==5*x1[t]-3*x2[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-3*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-5*x__1(t) + 3*x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)