14.31.1 problem 8
Internal
problem
ID
[2820]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
4.
Qualitative
theory
of
differential
equations.
Section
4.6
(Qualitative
properties
of
orbits).
Page
417
Problem
number
:
8
Date
solved
:
Sunday, March 30, 2025 at 12:21:11 AM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\begin{align*} z^{\prime \prime }+z^{3}&=0 \end{align*}
✓ Maple. Time used: 0.018 (sec). Leaf size: 20
ode:=diff(diff(z(t),t),t)+z(t)^3 = 0;
dsolve(ode,z(t), singsol=all);
\[
z = c_2 \,\operatorname {JacobiSN}\left (\frac {\left (\sqrt {2}\, t +2 c_1 \right ) c_2}{2}, i\right )
\]
✓ Mathematica. Time used: 24.614 (sec). Leaf size: 106
ode=D[z[t],{t,2}]+z[t]^3==0;
ic={};
DSolve[{ode,ic},z[t],t,IncludeSingularSolutions->True]
\begin{align*}
z(t)\to \frac {i \sqrt [4]{2} \text {sn}\left (\left .\frac {\sqrt {\sqrt {c_1} (t+c_2){}^2}}{\sqrt [4]{2}}\right |-1\right )}{\sqrt {-\frac {1}{\sqrt {c_1}}}} \\
z(t)\to -\frac {i \sqrt [4]{2} \text {sn}\left (\left .\frac {\sqrt {\sqrt {c_1} (t+c_2){}^2}}{\sqrt [4]{2}}\right |-1\right )}{\sqrt {-\frac {1}{\sqrt {c_1}}}} \\
z(t)\to 0 \\
\end{align*}
✓ Sympy. Time used: 11.920 (sec). Leaf size: 88
from sympy import *
t = symbols("t")
z = Function("z")
ode = Eq(z(t)**3 + Derivative(z(t), (t, 2)),0)
ics = {}
dsolve(ode,func=z(t),ics=ics)
\[
\left [ \frac {z{\left (t \right )} \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {e^{2 i \pi } z^{4}{\left (t \right )}}{2 C_{1}}} \right )}}{4 \sqrt {C_{1}} \Gamma \left (\frac {5}{4}\right )} = C_{2} + t, \ \frac {z{\left (t \right )} \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {e^{2 i \pi } z^{4}{\left (t \right )}}{2 C_{1}}} \right )}}{4 \sqrt {C_{1}} \Gamma \left (\frac {5}{4}\right )} = C_{2} - t\right ]
\]