83.49.21 problem Ex 21 page 138

Internal problem ID [19563]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Book Solved Excercises. Chapter VIII. Linear equations of second order
Problem number : Ex 21 page 138
Date solved : Monday, March 31, 2025 at 07:33:34 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+a^{2} y&=\sec \left (a x \right ) \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 40
ode:=diff(diff(y(x),x),x)+a^2*y(x) = sec(a*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (a x \right ) c_2 +\cos \left (a x \right ) c_1 +\frac {x \sin \left (a x \right ) a -\ln \left (\sec \left (a x \right )\right ) \cos \left (a x \right )}{a^{2}} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 39
ode=D[y[x],{x,2}]+a^2*y[x]==Sec[a*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\cos (a x) \left (\log (\cos (a x))+a^2 c_1\right )+a (x+a c_2) \sin (a x)}{a^2} \]
Sympy. Time used: 0.483 (sec). Leaf size: 58
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**2*y(x) + Derivative(y(x), (x, 2)) - 1/cos(a*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + \frac {\log {\left (e^{2 i a x} + 1 \right )}}{2 a^{2}}\right ) e^{- i a x} + \left (C_{2} - \frac {i x}{a} + \frac {\log {\left (e^{2 i a x} + 1 \right )}}{2 a^{2}}\right ) e^{i a x} \]