83.21.2 problem 2

Internal problem ID [19175]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (D) at page 57
Problem number : 2
Date solved : Monday, March 31, 2025 at 06:51:13 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} y&=x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \end{align*}

Maple. Time used: 0.081 (sec). Leaf size: 44
ode:=y(x) = x*diff(y(x),x)+diff(y(x),x)-diff(y(x),x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 \sqrt {3 x +3}\, \left (x +1\right )}{9} \\ y &= \frac {2 \sqrt {3 x +3}\, \left (x +1\right )}{9} \\ y &= c_1 \left (-c_1^{2}+x +1\right ) \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 57
ode=y[x]==x*D[y[x],x]+D[y[x],x]-D[y[x],x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 \left (x+1-c_1{}^2\right ) \\ y(x)\to -\frac {2 (x+1)^{3/2}}{3 \sqrt {3}} \\ y(x)\to \frac {2 (x+1)^{3/2}}{3 \sqrt {3}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + y(x) + Derivative(y(x), x)**3 - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out