83.21.1 problem 1

Internal problem ID [19174]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (D) at page 57
Problem number : 1
Date solved : Monday, March 31, 2025 at 06:51:12 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Clairaut]

\begin{align*} y&=x y^{\prime }+\frac {a}{y^{\prime }} \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 35
ode:=y(x) = x*diff(y(x),x)+a/diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -2 \sqrt {a x} \\ y &= 2 \sqrt {a x} \\ y &= \frac {c_1^{2} x +a}{c_1} \\ \end{align*}
Mathematica. Time used: 0.013 (sec). Leaf size: 53
ode=y[x]==x*D[y[x],x]+a/D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {a}{c_1}+c_1 x \\ y(x)\to \text {Indeterminate} \\ y(x)\to -2 \sqrt {a} \sqrt {x} \\ y(x)\to 2 \sqrt {a} \sqrt {x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a/Derivative(y(x), x) - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out