Internal
problem
ID
[18961]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IX.
Equations
of
the
second
order.
problems
at
end
of
chapter
at
page
120
Problem
number
:
Ex.
16
Date
solved
:
Monday, March 31, 2025 at 06:26:40 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(x^3-x)*diff(diff(y(x),x),x)+diff(y(x),x)+n^2*x^3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^3-x)*D[y[x],{x,2}]+D[y[x],x]+n^2*x^3*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(n**2*x**3*y(x) + (x**3 - x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False