82.54.16 problem Ex. 16

Internal problem ID [18961]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IX. Equations of the second order. problems at end of chapter at page 120
Problem number : Ex. 16
Date solved : Monday, March 31, 2025 at 06:26:40 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 29
ode:=(x^3-x)*diff(diff(y(x),x),x)+diff(y(x),x)+n^2*x^3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (n \sqrt {x^{2}-1}\right )+c_2 \cos \left (n \sqrt {x^{2}-1}\right ) \]
Mathematica. Time used: 0.036 (sec). Leaf size: 36
ode=(x^3-x)*D[y[x],{x,2}]+D[y[x],x]+n^2*x^3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos \left (n \sqrt {x^2-1}\right )+c_2 \sin \left (n \sqrt {x^2-1}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(n**2*x**3*y(x) + (x**3 - x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False