Internal
problem
ID
[18960]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IX.
Equations
of
the
second
order.
problems
at
end
of
chapter
at
page
120
Problem
number
:
Ex.
15
Date
solved
:
Monday, March 31, 2025 at 06:26:37 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(a^2-x^2)*diff(diff(y(x),x),x)-a^2/x*diff(y(x),x)+x^2/a*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a^2-x^2)*D[y[x],{x,2}]-a^2/x*D[y[x],x]+x^2/a*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2*Derivative(y(x), x)/x + (a**2 - x**2)*Derivative(y(x), (x, 2)) + x**2*y(x)/a,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False