Internal
problem
ID
[18780]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IV.
Singular
solutions.
problems
at
page
43
Problem
number
:
Ex.
4
Date
solved
:
Monday, March 31, 2025 at 06:12:37 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x^2*diff(y(x),x)^2-3*x*y(x)*diff(y(x),x)+2*y(x)^2+x^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]^2-3*x*y[x]*D[y[x],x]+2*y[x]^2+x^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 + x**2*Derivative(y(x), x)**2 - 3*x*y(x)*Derivative(y(x), x) + 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(-4*x**3 + y(x)**2) + 3*y(x))/(2*x) cannot be solved by the factorable group method