82.19.3 problem Ex. 3

Internal problem ID [18779]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems at page 43
Problem number : Ex. 3
Date solved : Monday, March 31, 2025 at 06:12:27 PM
CAS classification : [_separable]

\begin{align*} y^{\prime } \sqrt {x}&=\sqrt {y} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(y(x),x)*x^(1/2) = y(x)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \sqrt {y}-\sqrt {x}-c_1 = 0 \]
Mathematica. Time used: 0.141 (sec). Leaf size: 26
ode=D[y[x],x]*Sqrt[x]==Sqrt[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} \left (2 \sqrt {x}+c_1\right ){}^2 \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.202 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sqrt(x)*Derivative(y(x), x) - sqrt(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}^{2}}{4} + C_{1} \sqrt {x} + x \]