81.8.5 problem 12

Internal problem ID [18644]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VII. Ordinary differential equations in two dependent variables. Exercises at page 86
Problem number : 12
Date solved : Monday, March 31, 2025 at 05:48:44 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d x}y \left (x \right )-3 y \left (x \right )-2 z \left (x \right )&=0\\ \frac {d}{d x}z \left (x \right )+y \left (x \right )-2 z \left (x \right )&=0 \end{align*}

Maple. Time used: 0.131 (sec). Leaf size: 81
ode:=[diff(y(x),x)-3*y(x)-2*z(x) = 0, diff(z(x),x)+y(x)-2*z(x) = 0]; 
dsolve(ode);
 
\begin{align*} y \left (x \right ) &= {\mathrm e}^{\frac {5 x}{2}} \left (\sin \left (\frac {\sqrt {7}\, x}{2}\right ) c_1 +\cos \left (\frac {\sqrt {7}\, x}{2}\right ) c_2 \right ) \\ z \left (x \right ) &= -\frac {{\mathrm e}^{\frac {5 x}{2}} \left (\sin \left (\frac {\sqrt {7}\, x}{2}\right ) \sqrt {7}\, c_2 -\cos \left (\frac {\sqrt {7}\, x}{2}\right ) \sqrt {7}\, c_1 +\sin \left (\frac {\sqrt {7}\, x}{2}\right ) c_1 +\cos \left (\frac {\sqrt {7}\, x}{2}\right ) c_2 \right )}{4} \\ \end{align*}
Mathematica. Time used: 0.016 (sec). Leaf size: 111
ode={D[y[x],x]-3*y[x]-2*z[x]==0,D[z[x],x]+y[x]-2*z[x]==0}; 
ic={}; 
DSolve[{ode,ic},{y[x],z[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{7} e^{5 x/2} \left (7 c_1 \cos \left (\frac {\sqrt {7} x}{2}\right )+\sqrt {7} (c_1+4 c_2) \sin \left (\frac {\sqrt {7} x}{2}\right )\right ) \\ z(x)\to \frac {1}{7} e^{5 x/2} \left (7 c_2 \cos \left (\frac {\sqrt {7} x}{2}\right )-\sqrt {7} (2 c_1+c_2) \sin \left (\frac {\sqrt {7} x}{2}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.182 (sec). Leaf size: 99
from sympy import * 
x = symbols("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(-3*y(x) - 2*z(x) + Derivative(y(x), x),0),Eq(y(x) - 2*z(x) + Derivative(z(x), x),0)] 
ics = {} 
dsolve(ode,func=[y(x),z(x)],ics=ics)
 
\[ \left [ y{\left (x \right )} = - \left (\frac {C_{1}}{2} - \frac {\sqrt {7} C_{2}}{2}\right ) e^{\frac {5 x}{2}} \cos {\left (\frac {\sqrt {7} x}{2} \right )} + \left (\frac {\sqrt {7} C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{\frac {5 x}{2}} \sin {\left (\frac {\sqrt {7} x}{2} \right )}, \ z{\left (x \right )} = C_{1} e^{\frac {5 x}{2}} \cos {\left (\frac {\sqrt {7} x}{2} \right )} - C_{2} e^{\frac {5 x}{2}} \sin {\left (\frac {\sqrt {7} x}{2} \right )}\right ] \]