81.8.4 problem 11

Internal problem ID [18643]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VII. Ordinary differential equations in two dependent variables. Exercises at page 86
Problem number : 11
Date solved : Monday, March 31, 2025 at 05:48:42 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d x}y \left (x \right )+3 y \left (x \right )+2 z \left (x \right )&=0\\ \frac {d}{d x}z \left (x \right )+2 y \left (x \right )-4 z \left (x \right )&=0 \end{align*}

Maple. Time used: 0.112 (sec). Leaf size: 85
ode:=[diff(y(x),x)+3*y(x)+2*z(x) = 0, diff(z(x),x)+2*y(x)-4*z(x) = 0]; 
dsolve(ode);
 
\begin{align*} y \left (x \right ) &= c_1 \,{\mathrm e}^{\frac {\left (1+\sqrt {65}\right ) x}{2}}+c_2 \,{\mathrm e}^{-\frac {\left (-1+\sqrt {65}\right ) x}{2}} \\ z \left (x \right ) &= -\frac {c_1 \,{\mathrm e}^{\frac {\left (1+\sqrt {65}\right ) x}{2}} \sqrt {65}}{4}+\frac {c_2 \,{\mathrm e}^{-\frac {\left (-1+\sqrt {65}\right ) x}{2}} \sqrt {65}}{4}-\frac {7 c_1 \,{\mathrm e}^{\frac {\left (1+\sqrt {65}\right ) x}{2}}}{4}-\frac {7 c_2 \,{\mathrm e}^{-\frac {\left (-1+\sqrt {65}\right ) x}{2}}}{4} \\ \end{align*}
Mathematica. Time used: 0.011 (sec). Leaf size: 152
ode={D[y[x],x]+3*y[x]+2*z[x]==0,D[z[x],x]+2*y[x]-4*z[x]==0}; 
ic={}; 
DSolve[{ode,ic},{y[x],z[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{130} e^{\frac {1}{2} \left (x-\sqrt {65} x\right )} \left (c_1 \left (\left (7 \sqrt {65}-65\right ) e^{\sqrt {65} x}-65-7 \sqrt {65}\right )+4 \sqrt {65} c_2 \left (e^{\sqrt {65} x}-1\right )\right ) \\ z(x)\to \frac {1}{130} e^{\frac {1}{2} \left (x-\sqrt {65} x\right )} \left (c_2 \left (\left (65+7 \sqrt {65}\right ) e^{\sqrt {65} x}+65-7 \sqrt {65}\right )-4 \sqrt {65} c_1 \left (e^{\sqrt {65} x}-1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.194 (sec). Leaf size: 75
from sympy import * 
x = symbols("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(3*y(x) + 2*z(x) + Derivative(y(x), x),0),Eq(2*y(x) - 4*z(x) + Derivative(z(x), x),0)] 
ics = {} 
dsolve(ode,func=[y(x),z(x)],ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {C_{1} \left (7 - \sqrt {65}\right ) e^{\frac {x \left (1 + \sqrt {65}\right )}{2}}}{4} + \frac {C_{2} \left (7 + \sqrt {65}\right ) e^{\frac {x \left (1 - \sqrt {65}\right )}{2}}}{4}, \ z{\left (x \right )} = C_{1} e^{\frac {x \left (1 + \sqrt {65}\right )}{2}} + C_{2} e^{\frac {x \left (1 - \sqrt {65}\right )}{2}}\right ] \]