Internal
problem
ID
[18066]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
15
Date
solved
:
Monday, March 31, 2025 at 05:02:44 PM
CAS
classification
:
[_separable]
ode:=x*ln(y(x))+x*y(x)+(y(x)*ln(x)+x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*Log[y[x]]+x*y[x])+(y[x]*Log[x]+x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + x*log(y(x)) + (x*y(x) + y(x)*log(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)