78.4.13 problem 14

Internal problem ID [18065]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 8 (Exact Equations). Problems at page 72
Problem number : 14
Date solved : Monday, March 31, 2025 at 05:02:39 PM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} 2 x \left (1+\sqrt {x^{2}-y}\right )&=\sqrt {x^{2}-y}\, y^{\prime } \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 30
ode:=2*x*(1+(x^2-y(x))^(1/2)) = (x^2-y(x))^(1/2)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (2 x^{2}-2 y\right ) \sqrt {x^{2}-y}}{3}+x^{2}+c_1 = 0 \]
Mathematica. Time used: 0.836 (sec). Leaf size: 121
ode=2*x*(1+Sqrt[x^2-y[x]])==Sqrt[x^2-y[x]]*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x^2+\left (\frac {3}{2}\right )^{2/3} \sqrt [3]{-\left (x^2+c_1\right ){}^2} \\ y(x)\to x^2-\frac {\sqrt [6]{3} \left (\sqrt {3}-3 i\right ) \sqrt [3]{-\left (x^2+c_1\right ){}^2}}{2\ 2^{2/3}} \\ y(x)\to x^2-\frac {\sqrt [6]{3} \left (\sqrt {3}+3 i\right ) \sqrt [3]{-\left (x^2+c_1\right ){}^2}}{2\ 2^{2/3}} \\ \end{align*}
Sympy. Time used: 4.758 (sec). Leaf size: 109
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*(sqrt(x**2 - y(x)) + 1) - sqrt(x**2 - y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = x^{2} + \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{- 9 C_{1}^{2} - 9 C_{1} x^{2} - \frac {9 x^{4}}{4}}}{2}, \ y{\left (x \right )} = x^{2} + \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{- 9 C_{1}^{2} - 9 C_{1} x^{2} - \frac {9 x^{4}}{4}}}{2}, \ y{\left (x \right )} = x^{2} + \sqrt [3]{- 9 C_{1}^{2} - 9 C_{1} x^{2} - \frac {9 x^{4}}{4}}\right ] \]