Internal
problem
ID
[18065]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
14
Date
solved
:
Monday, March 31, 2025 at 05:02:39 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]
ode:=2*x*(1+(x^2-y(x))^(1/2)) = (x^2-y(x))^(1/2)*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=2*x*(1+Sqrt[x^2-y[x]])==Sqrt[x^2-y[x]]*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*(sqrt(x**2 - y(x)) + 1) - sqrt(x**2 - y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)