Internal
problem
ID
[17477]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.1
(Definitions
and
examples).
Problems
at
page
214
Problem
number
:
4
Date
solved
:
Monday, March 31, 2025 at 04:14:42 PM
CAS
classification
:
[_Bessel]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(-nu^2+x^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-n^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") nu = symbols("nu") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (-nu**2 + x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)