Internal
problem
ID
[17463]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.6
(A
brief
introduction
to
nonlinear
systems).
Problems
at
page
195
Problem
number
:
12
Date
solved
:
Monday, March 31, 2025 at 04:14:22 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)-x(t)^2, diff(y(t),t) = 2*x(t)*y(t)-3*y(t)+2]; dsolve(ode);
ode={D[x[t],t]==3*x[t]-x[t]^2,D[y[t],t]==2*x[t]*y[t]-3*y[t]+2}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t)**2 - 3*x(t) + Derivative(x(t), t),0),Eq(-2*x(t)*y(t) + 3*y(t) + Derivative(y(t), t) - 2,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)