75.23.9 problem 732

Internal problem ID [17135]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 18.1 Integration of differential equation in series. Power series. Exercises page 171
Problem number : 732
Date solved : Monday, March 31, 2025 at 03:42:57 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }-2 x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 14
Order:=6; 
ode:=diff(y(x),x)-2*x*y(x) = 0; 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = 1+x^{2}+\frac {1}{2} x^{4}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 15
ode=D[y[x],x]-2*x*y[x]==0; 
ic={y[0]==1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {x^4}{2}+x^2+1 \]
Sympy. Time used: 0.647 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = 1 + x^{2} + \frac {x^{4}}{2} + O\left (x^{6}\right ) \]