Internal
problem
ID
[782]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Chapter
1
review
problems.
Page
78
Problem
number
:
12
Date
solved
:
Saturday, March 29, 2025 at 10:22:28 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class B`]]
ode:=6*x*y(x)^3+2*y(x)^4+(9*x^2*y(x)^2+8*x*y(x)^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=6*x*y[x]^3+2*y[x]^4+(9*x^2*y[x]^2+8*x*y[x]^3)*D[y[x],x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x*y(x)**3 + (9*x**2*y(x)**2 + 8*x*y(x)**3)*Derivative(y(x), x) + 2*y(x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out