Internal
problem
ID
[781]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Chapter
1
review
problems.
Page
78
Problem
number
:
11
Date
solved
:
Saturday, March 29, 2025 at 10:22:25 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x) = x*y(x)+3*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x] == x*y[x]+3*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - 3*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)