Internal
problem
ID
[17062]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.4
Nonhomogeneous
linear
equations
with
constant
coefficients.
The
Euler
equations.
Exercises
page
143
Problem
number
:
634
Date
solved
:
Monday, March 31, 2025 at 03:39:42 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(1+x)^3*diff(diff(y(x),x),x)+3*(1+x)^2*diff(y(x),x)+(1+x)*y(x) = 6*ln(1+x); dsolve(ode,y(x), singsol=all);
ode=(x+1)^3*D[y[x],{x,2}]+3*(x+1)^2*D[y[x],x]+(x+1)*y[x]==6*Log[x+1]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 1)**3*Derivative(y(x), (x, 2)) + 3*(x + 1)**2*Derivative(y(x), x) + (x + 1)*y(x) - 6*log(x + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*Derivative(y(x), (x, 2)) - 3*x**2*Derivative(y(x), (x, 2)) - x*y(x) - 3*x*Derivative(y(x), (x, 2)) - y(x) + 6*log(x + 1) - Derivative(y(x), (x, 2)))/(3*(x**2 + 2*x + 1)) cannot be solved by the factorable group method