Internal
problem
ID
[17061]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.4
Nonhomogeneous
linear
equations
with
constant
coefficients.
The
Euler
equations.
Exercises
page
143
Problem
number
:
633
Date
solved
:
Monday, March 31, 2025 at 03:39:39 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 2*ln(x)^2+12*x; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==2*(Log[x])^2+12*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) - 12*x + 2*y(x) - 2*log(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)