Internal
problem
ID
[16730]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
182
Date
solved
:
Monday, March 31, 2025 at 03:12:55 PM
CAS
classification
:
[_separable]
ode:=x*y(x)/(x^2+1)^(1/2)+2*x*y(x)-y(x)/x+((x^2+1)^(1/2)+x^2-ln(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( x*y[x]/Sqrt[1+x^2] + 2*x*y[x] -y[x]/x )+( Sqrt[1+x^2] + x^2-Log[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + x*y(x)/sqrt(x**2 + 1) + (x**2 + sqrt(x**2 + 1) - log(x))*Derivative(y(x), x) - y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)