75.7.7 problem 181

Internal problem ID [16729]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 7, Total differential equations. The integrating factor. Exercises page 61
Problem number : 181
Date solved : Monday, March 31, 2025 at 03:12:53 PM
CAS classification : [_exact, _rational]

\begin{align*} 3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 635
ode:=3*x^2-2*x-y(x)+(2*y(x)-x+3*y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+162 c_1 \,x^{3}+135 x^{4}-162 c_1 \,x^{2}-54 x^{3}+81 c_1^{2}+54 c_1 x -15 x^{2}+12 c_1}\right )^{{1}/{3}}}{6}+\frac {2 x +\frac {2}{3}}{\left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+162 c_1 \,x^{3}+135 x^{4}-162 c_1 \,x^{2}-54 x^{3}+81 c_1^{2}+54 c_1 x -15 x^{2}+12 c_1}\right )^{{1}/{3}}}-\frac {1}{3} \\ y &= \frac {i \left (4-\left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_1 -54\right ) x^{3}+\left (-162 c_1 -15\right ) x^{2}+54 c_1 x +81 c_1^{2}+12 c_1}\right )^{{2}/{3}}+12 x \right ) \sqrt {3}-12 x -{\left (\left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_1 -54\right ) x^{3}+\left (-162 c_1 -15\right ) x^{2}+54 c_1 x +81 c_1^{2}+12 c_1}\right )^{{1}/{3}}+2\right )}^{2}}{12 \left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_1 -54\right ) x^{3}+\left (-162 c_1 -15\right ) x^{2}+54 c_1 x +81 c_1^{2}+12 c_1}\right )^{{1}/{3}}} \\ y &= \frac {i \left (\left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_1 -54\right ) x^{3}+\left (-162 c_1 -15\right ) x^{2}+54 c_1 x +81 c_1^{2}+12 c_1}\right )^{{2}/{3}}-12 x -4\right ) \sqrt {3}-12 x -{\left (\left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_1 -54\right ) x^{3}+\left (-162 c_1 -15\right ) x^{2}+54 c_1 x +81 c_1^{2}+12 c_1}\right )^{{1}/{3}}+2\right )}^{2}}{12 \left (-36 x -108 x^{3}+108 x^{2}-108 c_1 -8+12 \sqrt {81 x^{6}-162 x^{5}+135 x^{4}+\left (162 c_1 -54\right ) x^{3}+\left (-162 c_1 -15\right ) x^{2}+54 c_1 x +81 c_1^{2}+12 c_1}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 5.835 (sec). Leaf size: 478
ode=( 3*x^2-2*x-y[x]  )+( 2*y[x]-x+3*y[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{6} \left (-\frac {2 \sqrt [3]{2} (3 x+1)}{\sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}}-2^{2/3} \sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}-2\right ) \\ y(x)\to \frac {1}{12} \left (\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) (3 x+1)}{\sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}}+2^{2/3} \left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}-4\right ) \\ y(x)\to \frac {1}{12} \left (\frac {2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) (3 x+1)}{\sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}}+2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^3-27 x^2+\sqrt {-4 (3 x+1)^3+\left (27 x^3-27 x^2+9 x+2+27 c_1\right ){}^2}+9 x+2+27 c_1}-4\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2 - 2*x + (-x + 3*y(x)**2 + 2*y(x))*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out