Internal
problem
ID
[16582]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
6.
Systems
of
Differential
Equations.
Exercises
6.1,
page
282
Problem
number
:
6
Date
solved
:
Monday, March 31, 2025 at 02:59:36 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -x__1(t)+1, diff(x__2(t),t) = x__2(t)]; ic:=x__1(0) = 0x__2(0) = 1; dsolve([ode,ic]);
ode={D[ x1[t],t]==-x1[t],D[ x2[t],t]==x2[t]}; ic={x1[0]==0,x2[0]==1}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(x__1(t) + Derivative(x__1(t), t) - 1,0),Eq(-x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)