74.22.5 problem 5

Internal problem ID [16581]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 6. Systems of Differential Equations. Exercises 6.1, page 282
Problem number : 5
Date solved : Monday, March 31, 2025 at 02:59:34 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-3 x_{1} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=1 \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = -1\\ x_{2} \left (0\right ) = 1 \end{align*}

Maple. Time used: 0.118 (sec). Leaf size: 16
ode:=[diff(x__1(t),t) = -3*x__1(t), diff(x__2(t),t) = 1]; 
ic:=x__1(0) = -1x__2(0) = 1; 
dsolve([ode,ic]);
 
\begin{align*} x_{1} \left (t \right ) &= -{\mathrm e}^{-3 t} \\ x_{2} \left (t \right ) &= t +1 \\ \end{align*}
Mathematica. Time used: 0.022 (sec). Leaf size: 18
ode={D[ x1[t],t]==-3*x1[t],D[ x2[t],t]==1}; 
ic={x1[0]==-1,x2[0]==1}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to -e^{-3 t} \\ \text {x2}(t)\to t+1 \\ \end{align*}
Sympy. Time used: 0.077 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(3*x__1(t) + Derivative(x__1(t), t),0),Eq(Derivative(x__2(t), t) - 1,0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = C_{1} e^{- 3 t}, \ x^{2}{\left (t \right )} = C_{2} + t\right ] \]