Internal
problem
ID
[16424]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
54
(e)
Date
solved
:
Monday, March 31, 2025 at 02:53:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=(x^4-1)*diff(diff(y(x),x),x)+(x^3-x)*diff(y(x),x)+(x^2-1)*y(x) = 0; ic:=y(0) = 0, D(y)(0) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=(x^4-1)*D[y[x],{x,2}]+(x^3-x)*D[y[x],x]+(x^2-1)*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2 - 1)*y(x) + (x**3 - x)*Derivative(y(x), x) + (x**4 - 1)*Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)
False