Internal
problem
ID
[16423]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
54
(d)
Date
solved
:
Monday, March 31, 2025 at 02:52:58 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(x^4-1)*diff(diff(y(x),x),x)+(x^3-x)*diff(y(x),x)+(4*x^2-4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^4-1)*D[y[x],{x,2}]+(x^3-x)*D[y[x],x]+(4*x^2-4)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((4*x**2 - 4)*y(x) + (x**3 - x)*Derivative(y(x), x) + (x**4 - 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False