74.8.6 problem 6

Internal problem ID [16071]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 6
Date solved : Monday, March 31, 2025 at 02:38:42 PM
CAS classification : [_separable]

\begin{align*} -\frac {1}{x^{5}}+\frac {1}{x^{3}}&=\left (2 y^{4}-6 y^{9}\right ) y^{\prime } \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 522
ode:=-1/x^5+1/x^3 = (2*y(x)^4-6*y(x)^9)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {6^{{4}/{5}} \left (2 x^{5}+x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{6 x} \\ y &= \frac {6^{{4}/{5}} \left (2 x^{5}-x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{6 x} \\ y &= -\frac {\left (i \sqrt {10-2 \sqrt {5}}+\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}+x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (i \sqrt {10-2 \sqrt {5}}-\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}+x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= -\frac {\left (i \sqrt {10+2 \sqrt {5}}-\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}+x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (i \sqrt {10+2 \sqrt {5}}+\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}+x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= -\frac {\left (i \sqrt {10-2 \sqrt {5}}+\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}-x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (i \sqrt {10-2 \sqrt {5}}-\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}-x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= -\frac {\left (i \sqrt {10+2 \sqrt {5}}-\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}-x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (i \sqrt {10+2 \sqrt {5}}+\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}-x^{3} \sqrt {-60 c_1 \,x^{4}+30 x^{2}-15}\right )^{{1}/{5}}}{24 x} \\ \end{align*}
Mathematica. Time used: 0.347 (sec). Leaf size: 45
ode=(-x^(-5)+x^(-3))==(2*y[x]^4-6*y[x]^9)*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}K[1]^4 \left (3 K[1]^5-1\right )dK[1]\&\right ]\left [\frac {2 x^2-1}{8 x^4}+c_1\right ] \]
Sympy. Time used: 87.510 (sec). Leaf size: 649
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(-6*y(x)**9 + 2*y(x)**4)*Derivative(y(x), x) + x**(-3) - 1/x**5,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]