74.8.5 problem 5

Internal problem ID [16070]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 5
Date solved : Monday, March 31, 2025 at 02:38:40 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{5 t}}{y^{4}} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 140
ode:=diff(y(t),t) = exp(5*t)/y(t)^4; 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= \left ({\mathrm e}^{5 t}+c_1 \right )^{{1}/{5}} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}+\sqrt {5}+1\right ) \left ({\mathrm e}^{5 t}+c_1 \right )^{{1}/{5}}}{4} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}-\sqrt {5}-1\right ) \left ({\mathrm e}^{5 t}+c_1 \right )^{{1}/{5}}}{4} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}-\sqrt {5}+1\right ) \left ({\mathrm e}^{5 t}+c_1 \right )^{{1}/{5}}}{4} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}+\sqrt {5}-1\right ) \left ({\mathrm e}^{5 t}+c_1 \right )^{{1}/{5}}}{4} \\ \end{align*}
Mathematica. Time used: 0.754 (sec). Leaf size: 117
ode=D[y[t],t]==Exp[5*t]/y[t]^4; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to \sqrt [5]{e^{5 t}+5 c_1} \\ y(t)\to -\sqrt [5]{-1} \sqrt [5]{e^{5 t}+5 c_1} \\ y(t)\to (-1)^{2/5} \sqrt [5]{e^{5 t}+5 c_1} \\ y(t)\to -(-1)^{3/5} \sqrt [5]{e^{5 t}+5 c_1} \\ y(t)\to (-1)^{4/5} \sqrt [5]{e^{5 t}+5 c_1} \\ \end{align*}
Sympy. Time used: 3.367 (sec). Leaf size: 163
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(Derivative(y(t), t) - exp(5*t)/y(t)**4,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \left [ y{\left (t \right )} = \sqrt [5]{C_{1} + e^{5 t}}, \ y{\left (t \right )} = \frac {\sqrt [5]{C_{1} + e^{5 t}} \left (- \sqrt {5} - 1 - \sqrt {2} i \sqrt {5 - \sqrt {5}}\right )}{4}, \ y{\left (t \right )} = \frac {\sqrt [5]{C_{1} + e^{5 t}} \left (- \sqrt {5} - 1 + \sqrt {2} i \sqrt {5 - \sqrt {5}}\right )}{4}, \ y{\left (t \right )} = \frac {\sqrt [5]{C_{1} + e^{5 t}} \left (-1 + \sqrt {5} - \sqrt {2} i \sqrt {\sqrt {5} + 5}\right )}{4}, \ y{\left (t \right )} = \frac {\sqrt [5]{C_{1} + e^{5 t}} \left (-1 + \sqrt {5} + \sqrt {2} i \sqrt {\sqrt {5} + 5}\right )}{4}\right ] \]