Internal
problem
ID
[15988]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
37
Date
solved
:
Monday, March 31, 2025 at 02:21:31 PM
CAS
classification
:
[_exact, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=y(t)^2-2*sin(2*t)+(1+2*t*y(t))*diff(y(t),t) = 0; ic:=y(0) = 1; dsolve([ode,ic],y(t), singsol=all);
ode=(y[t]^2-2*Sin[2*t])+(1+2*t*y[t])*D[y[t],t]==0; ic={y[0]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((2*t*y(t) + 1)*Derivative(y(t), t) + y(t)**2 - 2*sin(2*t),0) ics = {y(0): 1} dsolve(ode,func=y(t),ics=ics)
Timed Out