74.6.35 problem 36

Internal problem ID [15987]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.4, page 57
Problem number : 36
Date solved : Monday, March 31, 2025 at 02:20:53 PM
CAS classification : [_exact]

\begin{align*} 2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.211 (sec). Leaf size: 18
ode:=2*t*y(t)*exp(t^2)+2*t*exp(-y(t))+(exp(t^2)-t^2*exp(-y(t))+1)*diff(y(t),t) = 0; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \operatorname {LambertW}\left (-\frac {t^{2}}{{\mathrm e}^{t^{2}}+1}\right ) \]
Mathematica. Time used: 60.429 (sec). Leaf size: 20
ode=(2*t*y[t]*Exp[t^2]+2*t*Exp[-y[t]])+(Exp[t^2]-t^2*Exp[-y[t]]+1)*D[y[t],t]==0; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to W\left (-\frac {t^2}{e^{t^2}+1}\right ) \]
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*t*y(t)*exp(t**2) + 2*t*exp(-y(t)) + (-t**2*exp(-y(t)) + exp(t**2) + 1)*Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
Timed Out