Internal
problem
ID
[15588]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
33.
Power
series
solutions
I:
Basic
computational
methods.
Additional
Exercises.
page
641
Problem
number
:
33.5
(a)
Date
solved
:
Monday, March 31, 2025 at 01:41:49 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(x^2+1)*diff(diff(y(x),x),x)-2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1+x^2)*D[y[x],{x,2}]-2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)