73.23.12 problem 33.3 (L)

Internal problem ID [15587]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.3 (L)
Date solved : Monday, March 31, 2025 at 01:41:48 PM
CAS classification : [_separable]

\begin{align*} \left (1+x \right ) y^{\prime }+\left (1-x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 37
Order:=6; 
ode:=(1+x)*diff(y(x),x)+(1-x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-x +\frac {3}{2} x^{2}-\frac {11}{6} x^{3}+\frac {53}{24} x^{4}-\frac {103}{40} x^{5}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 39
ode=(1+x)*D[y[x],x]+(1-x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {103 x^5}{40}+\frac {53 x^4}{24}-\frac {11 x^3}{6}+\frac {3 x^2}{2}-x+1\right ) \]
Sympy. Time used: 0.834 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x)*y(x) + (x + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} - C_{1} x + \frac {3 C_{1} x^{2}}{2} - \frac {11 C_{1} x^{3}}{6} + \frac {53 C_{1} x^{4}}{24} - \frac {103 C_{1} x^{5}}{40} + O\left (x^{6}\right ) \]